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Abstract. The constitutive equations for the orientational dynamics of a liquid formed of linear molecules
are derived microscopically. The resulting generalised Langevin equations coincide with the phenomenologi-
cal approach of Dreyfus et al. [1]. Formally exact expressions are given for the phenomenological coefficients
and various constraints are shown to be consequences of this microscopic approach.

PACS. 64.70.Pf Glass transitions – 78.35.+c Brillouin and Rayleigh scattering; other light scattering –
61.25.Em Molecular liquids

1 Introduction

Light-scattering has proven to be an important tool for
investigating condensed matter physics. In the field of su-
percooled liquids, the structural relaxation covers many
decades either in the time, or in the frequency domain,
the latter being accessible by e.g., Fabry-Perot techniques.
The measured spectra, see e.g. [2], reflect the slowing down
of the structural relaxation upon lowering the tempera-
ture and exhibit the nontrivial power-laws and stretch-
ing effects found by other techniques, such as dielectric
spectroscopy for instance. The most direct measure of the
hindered motion due to the cage effect can be observed by
depolarised light-scattering in the back-scattering geom-
etry. For depolarised light-scattering performed at other
scattering angles, one observes an admixture of the trans-
verse current motion to the pure back-scattering signal.
Similarly, for polarised scattering, one obtains a contribu-
tion from density fluctuations which result in the Brillouin
resonance [3].

The subtlety of light-scattering lies in disentangling
the dependence on frequency shift, ω, and wave-vector
transfer, q, as well as on incident and outgoing polar-
isations. Since the wave-vector transfer, q, is small for
light-scattering, a generalised hydrodynamics approach is
suitable. There, the spectra are described in terms of a
number of frequency-dependent memory kernels, e.g. vis-
cosities. These kernels have sometimes been written on the
basis of heuristic arguments. This is the case, for instance
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of [1], in which different previous attempts are also de-
scribed and discussed. A more fundamental approach con-
sists in deriving them from a microscopic theory through,
say, a Zwanzig-Mori technique. The first such attempt was
made by Andersen and Pecora [4], who, in fact, made a
purely formal use of the technique, the memory kernels
being eventually approximated by instantaneous interac-
tions (Markov approximation). Much more recently, the
technique was used in its full generality in [5]. Using only
general symmetry considerations, [5] showed that the
description of the light scattering spectra involved ten
frequency-dependent functions. This large number was the
price to be paid in order not to miss any effect that leads
to a fluctuation of the dielectric tensor δεij(q, t). In the
present paper, we shall follow an intermediate route; we
shall derive, for a selected set of dynamical variables, the
precise form of their equations of motion, and of the cor-
responding relaxation kernels. Our results are valid what-
ever the temperature but are restricted to the case of
molecular supercooled liquids formed of symmetric top
molecules. Their application to the light scattering prob-
lem requires a precise form of δεij(r, t); following equa-
tion (12) of Part I of this series of papers, we shall assume
δεij(q, t) to depend only on two variables of the problem,
namely the density and the orientation fluctuations. Then
the light-scattering problem is reduced to calculating the
density-density, orientation-orientation as well as mixed
correlation functions which are expressed with the help of
appropriate memory kernels.

As a further simplification, we shall ignore tempera-
ture fluctuations, i.e. the hydrodynamic poles associated
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with energy conservation. This restriction is probably jus-
tified for Brillouin scattering experiments, since, for the
scattering vectors involved, the Rayleigh line lies at so low
a frequency that it is inaccessible to the usual frequency
domain methods. Furthermore, for liquids, the ratio of
the isobaric heat capacity to the isochoric one is close to
unity and, correspondingly, the total weight of the Bril-
louin lines is much larger than the weight contained in
the Rayleigh line; similarly, the isothermal sound veloc-
ity is close to the adiabatic one. The situation is different
for time-based methods like impulsive thermal stimulated
Brillouin scattering [6–8] where the heat diffusion contri-
bution can be observed as a late stage of the relaxation
signal, but this aspect of the problem will not be dealt
with here.

The goal of this paper is twofold. The first is to give
a microscopic derivation of the constitutive equations for
the density and orientation fluctuations used in [1,3,9],
and to derive some new results from this microscopic ap-
proach1. The second is to compare the results one can
obtain from the three microscopic approaches [4,5] and
the present paper, which differ in the variables taken into
account and/or in the scattering model.

Consequently, this paper is organized as follows. The
phenomenological equations of [9,1] are microscopically
derived in Section 2. In particular, we show that the
four memory functions which enter into those equations,
namely the bulk viscosity, ηb(t), the center-of-mass shear
viscosity, ηs(t), the rotational friction Γ ′(t), and the
rotation-translation coupling, µ(t), can be expressed in
terms of the dynamical variables of the problem, and of
a reduced time evolution R′(t) which does not contain
the hydrodynamics poles of the problem. Similarly, the
rotation-translation coupling constant, Λ′, and the molec-
ular libration frequency, ω0, which are the other ingre-
dients of these equations of motion, will be expressed in
terms of equal time thermal averages of some variables of
the problem. We make use of these microscopic expres-
sions of the memory functions in Section 3 to derive nec-
essary conditions on the imaginary part of their Laplace
transform, and on some contributions of them. These con-
ditions will be such that the light scattering spectra will
be always positive whatever the values of the coefficients
linearly coupling the density and orientation fluctuations
to δεij(q, t). Section 4 makes use of the same expressions
of the memory functions to relate, through a Green-Kubo
formalism, the correlation functions of some variables to
specific combinations of the Laplace transforms of these
memory functions. In particular, we shall show that ηb(t)
can be expressed as such a correlation function. The same
will be true for ηT (t), the memory function which takes
into account all the retardation effects related to the prop-
agation of the transverse phonons; this is not a priori ob-
vious because ηT (ω) will turn out to depend in a complex
way on the Laplace transforms of several memory func-
tions defined above, as well as on Λ′ and ω0. Section 5
will compare the expressions for the light scattering in-

1 A very brief study along similar lines was previously re-
ported in [10].

tensities that can be obtained using the three sets of vari-
ables and of dielectric fluctuation models already men-
tioned. We shall show that the set proposed in [4] leads
to awkward forms of the relaxation kernels when they are
not restricted to a Markov approximation, but used for a
molecular supercooled liquid. Conversely, as expected, the
results obtained in Part I are a restriction of those of [5]
corresponding to definite simplifying assumptions. A brief
summary and some comments conclude the paper.

2 A Zwanzig-Mori derivation
of the dynamical equations

We consider a dense liquid of N linear molecules of
mass m at temperature T enclosed in a volume V . Sta-
tistical correlations of phase space variables in terms of
the Kubo scalar product [11], (A(t)|B) = 〈δA(t)∗δB〉,
δA = A − 〈A〉, provide the simplest information on the
system’s dynamics with 〈.〉 denoting canonical averaging.
The thermodynamic limit, N → ∞, with fixed particle
density, n = N/V , is implied throughout. The time evo-
lution of the observables is driven by the Liouvillian L:
∂tA = iLA = {H,A}, where H denotes the Hamilton
function and { , } the Poisson bracket. We consider the
dynamics of the fluctuating molecular orientation tensor,
written directly in the reciprocal space:

Qij(q) = N−1/2
N∑
α=1

(
ûαiûαj −

1
3
δij

)
eiq·Rα , (1)

where the degrees of freedom of the α-th molecule are
specified by a unit vector, ûα, for the orientation and by
the position of its center-of-mass, Rα. The spatial modu-
lation of a fluctuation is characterized by its wave vector,
q, and Latin indices denote Cartesian components. The 9
components of Qij(q) are not independent, since the ori-
entation tensor is symmetric and traceless, reducing the
number of independent components to 5. The normali-
sation is chosen such that the correlation functions are
intensive.

Furthermore, we consider the fluctuations in the mass
density:

ρ(q) = mN−1/2
N∑
α=1

exp (iq · Rα) , (2)

and the Cartesian components of the mass current:

Ji(q) = N−1/2
N∑
α=1

Pαi exp (iq · Rα) , (3)

where Pα denotes the momentum of the αth molecule.
(Equivalently, one could use the particle density n(q) =
ρ(q)/m and the velocity vi(q) = Ji(q)/ρm, where ρm =
mn is the mean mass density.)
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2.1 Static averages

The static correlation functions need to be evaluated to
lowest order in q only. Since the Hamilton function re-
spects rotational invariance, all static averages in the liq-
uid phase have to remain unchanged under any rotation of
the system: this implies that, e.g. correlators between, say,
any second rank traceless tensor and any scalar will vanish
in the long-wavelength limit (see, e.g. equation (7)).

The static average of the density can be expressed as:

(ρ(q)|ρ(q)) = m2v2/c2 + O(q2) , (4)

where c is, here, the isothermal sound velocity 2 defined in
terms of the long-wavelength limit of the static structure
factor via c2 = v2/S(q → 0), while v =

√
kBT/m denotes

the thermal velocity. As usual, the current correlations
read:

(Ji(q)|Jk(q)) = δikm
2v2 . (5)

To lowest order in q, the equal-time correlators of the
tensor variables read:

(Qij(q)|Qkl(q)) = S2∆ij,kl + O(q2) , (6a)

where:

∆ij,kl =
(
δikδjl + δilδjk −

2
3
δijδkl

)
(6b)

is a fourth-rank tensor, the structure of which is governed
by rotational symmetry. The long-wavelength limit of the
9× 9 correlators in equation (6a) is thus determined by a
single number, S2, denoting the long-wavelength limit of
the corresponding generalised structure factor, a quantity
which is, as in equation (4), proportional in leading order
to kBT .

Due to rotational symmetry, the overlap of the tensor
variables with the density vanishes in the long-wavelength
limit according to:

(Qij(q)|ρ(q)) = O(q2). (7)

We shall also need to consider the tensor currents,
Q̇ij(q) = iLQij(q), which are normalised by:

(Q̇ij(q)|Q̇kl(q)) = Ω2∆ij,kl (8)

with the characteristic frequency scale Ω; we show, in Ap-
pendix A, equation (A.11), that Ω =

√
2kBT/5I, where

I is the moment of inertia of the molecule for a rota-
tion around an axis perpendicular to the molecule sym-
metry axis and passing through its center of mass. The
ratio of the static averages of the orientation and the
orientational current, ω0 = Ω/S, will determine the ax-
ial libration frequency, a frequency characteristic of the
short-time expansion for the orientation correlation func-
tion (see Eq. (30c)). Hence, there is a close analogy be-
tween the set of equations (6a) and (8) and the set of

2 See Section 4.2 for a careful discussion on the isother-
mal/adiabatic property.

density plus momentum current correlators whose ratio
determines the isothermal sound velocity c characteristic
of the initial decay of the density correlators; c and ω0 are,
to leading order, independent of temperature.

The correlation function between the mass current and
the tensor current components has now to be considered;
it is strictly equal to zero, whatever is q:

(Q̇ij(q)|Jk(q)) = 0 . (9)

This is due to the fact that we put the point of reference of
each molecule, Rα, at its center-of-mass, (see Appendix A
for a thorough discussion of this property). The remaining
static averages between the four distinguished variables
ρ(q), Ji(q), Qij(q) and Q̇ij(q) vanish due to time reversal
symmetry.

2.2 Constitutive equations

The mass conservation law relates the density to the mo-
mentum current:

∂tρ(q, t) = iqkJk(q, t) . (10)

Similarly, the conservation of momentum yields:

∂tJk(q, t) = iqlΠkl(q, t) , (11)

where Πkl(q, t) denotes the fluctuating momentum cur-
rent tensor. At last, we can write the trivial identity:

∂2
tQij(q, t) = Q̈ij(q, t) , (12)

which defines Q̈ij(q, t) as an orientational tensor force. In
order to close the system, we need constitutive equations
for the momentum current tensor, Πkl(q, t) and the orien-
tational tensor force. This will be achieved here through
generalised Langevin equations which will introduce ap-
propriate memory kernels. Let us first introduce the pro-
jection operator, P :

P = |Qkl(q))
1

2S2
(Qkl(q)|

+|Q̇kl(q))
1

2Ω2
(Q̇kl(q)| + |ρ(q))

c2

m2v2
(ρ(q)|

+|Jk(q))
1

m2v2
(Jk(q)| + O(q2) , (13)

where the sum over repeated indices is implied. P is a
projection operator because, once the symmetric charac-
ter of Qij(q) and Q̇ij(q) has been taken into account, one
can check that indeed P 2 = P . P projects onto the sub-
space spanned by density, mass current and the symmetric
traceless parts of the orientation and the corresponding
current.

The time evolution operator, R(t) = exp(iLt), can be
exactly reformulated as

R(t) = R(t)P +
∫ t

0

R(s)P iLR′(t− s)ds+R′(t), (14)
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with the reduced operator R′(t) = Q exp(iQLQt)Q, where
Q = 1 − P , and a short proof of equation (14) is given
in Appendix B. The benefit of this procedure lies in the
following. The time evolution operator, R(t), possesses, in
addition to a non-hydrodynamic part, long-lived hydrody-
namic modes that are due to conservation laws. This leads
to resonances in the spectra, viz. the Fourier transforms of
the time correlation functions of all the distinguished vari-
ables for small but nonzero wave vectors. Conversely, the
reduced time evolution operator, R′(t), devoids the hydro-
dynamic singularities and correlation functions with R′(t)
are regular in the long-wavelength limit. The problem of
handling the slow relaxation due to hydrodynamic con-
servation laws is treated explicitly in the low-dimensional
subspace of the distinguished variables. On the contrary,
the slow structural relaxation will be dealt with the help of
correlation functions of R′(t), the second term of the r.h.s.
of equation (14), which will appear in the form of mem-
ory kernels. In the spirit of generalised hydrodynamics,
the long-wavelength properties are described properly by
keeping the wave-vector dependences introduced explic-
itly by the conservation laws, while the memory kernels
can be evaluated in their long-wavelength limit.

Before deriving the constitutive equations from equa-
tion (14) for the missing quantities,Πij(q, t) and Q̈ij(q, t),
some comments on the structure of the resulting equations
in the long-wavelength limit are in order. First, from time
reversal symmetry, the instantaneous coupling (first term
of the r.h.s. of Eq. (14)) will be non-zero only for variables
of identical time-parity. Since both the momentum current
and the orientational force have even time parity, this in-
stantaneous part will consist of density and orientation
only. Second, rotational symmetry implies that the cou-
pling of irreducible tensors of different ranks is suppressed
in the long-wavelength limit by appropriate powers of the
wave number. The dynamical correlators enjoy the same
property, since the time evolution does not change the
rank of a tensor. We shall keep only the lowest nontriv-
ial terms in this small-wave-number expansion, as was al-
ready hinted at by keeping only the lowest order of the
static averages in the preceding section.

Finally, in the second term of the r.h.s. of equa-
tion (14), one can let iL operate on the ‘bra’ part of the
projector, P ; for instance:

|ρ(q))
c2

m2v2
(ρ(q)|iL = −|ρ(q))

c2

m2v2
(ρ̇(q)|

= |ρ(q))
c2

m2v2
iqk(Jk(q)| ; (15a)

because R′(t − s) contains, on its l.h.s, a Q = 1 − P fac-
tor, the contribution of Jk(q), and similarly of Q̇kl(q), are
eliminated from this second term and one obtains:

PiLR′(t− s) = −|Q̇kl(q))
1

2Ω2
(Q̈kl(q)|R′(t− s)

+ |Jk(q))
iql

mkBT
(Πkl(q)|R′(t− s). (15b)

Let’s first handle the momentum current tensor which
we decompose into:

Πij(q, t) = δijp(q, t) + πij(q, t) . (16a)

Here:

p(q, t) = [Πxx(q, t) +Πyy(q, t) +Πzz(q, t)]/3 (16b)

denotes the fluctuating pressure so that πij(q, t) is a
traceless symmetric second rank tensor. Multiplying equa-
tion (14) from the right by p(q) yields the desired
Langevin equation for the pressure fluctuation:

p(q, t) = R(t)Pp(q) +
∫ t

0

R(s)P iLR′(t− s)p(q)ds

+R′(t)p(q) . (17)

The first term represents an instantaneous coupling to the
distinguished variables of the projector. The second yields
a retarded coupling and the last term is a rapidly fluctu-
ating term that we shall call ‘noise’, i.e. which is uncor-
related for all times to the distinguished variables. Hence,
this term can be ignored for the evaluation of the correla-
tion functions of the distinguished variables. Nevertheless,
the same term will be useful in establishing the Kubo for-
mulae of Section 4, which will relate the time-dependent
correlation functions of some variables to the memory ker-
nels of the dynamical equations.

In order to evaluate the first term of equation (17),
we need static correlations of the pressure with the distin-
guished variables. Time-inversion symmetry allows non-
vanishing correlations only with the density and the ori-
entational tensor. Since rotational invariance implies:

(πij(q)|ρ(q)) = O(q2), (18a)

one can evaluate (ρ(q)|p(q)) by using the conservation of
momentum, equation (11), and equation (5), up to terms
of order O(q2):

(ρ(q)|p(q))iqk = (ρ(q)|p(q))iqlδkl
= (ρ(q)|iqlΠkl(q)) = (ρ(q)|J̇k(q))
= −(ρ̇(q)|Jk(q)) = iql(Jl(q)|Jk(q))
= iqkm2v2. (18b)

This yields:

(ρ(q)|p(q)) = m2v2 + O(q2) . (18c)

Conversely, rotational invariance implies, similarly
to equation (7), that (p(q)|Qij(q)) = O(q2). Collecting
the terms appearing in P , the long-wavelength instanta-
neous coupling is then simply given by:

R(t)Pp(q) = c2ρ(q, t). (19)

Let’s turn now to the retarded couplings. From equa-
tion (15b), one has to consider only the couplings of p(q)
with Q̇kl(q) and with Jk(q), and these couplings involve
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(Q̈kl(q)|R′(t − s)|p(q)) and (Πkl(q)|R′(t − s)|p(q)). As
Q̈kl(q) is traceless while Πkl(q) is not, the first term is
O(q2) while the second is of order unity. Consequently, to
lowest order in q, we need to consider only the retarded
coupling to Jk(q). It is convenient to introduce the long-
wavelength pressure correlator in the form:

(p|R′(t)|p) n

kBT
= ηb(t) . (20)

(Here, and in the rest of the paper, omitting the wave-
number dependence indicates that the quantity is to be
evaluated for q → 0.)

One thus obtains:

iql(Πkl(q)|R′(t− s)|p(q)) =

iqkηb(t− s)kBT/n+ O(q3), (21)

once we make use of the fact that (πkl(q)|R′(t)|p(q)) is of
order O(q2). Introducing equation (21) into the expression
of the retarded coupling and replacing, in equations (15),
Jk(q) by mnvk(q), one obtains the standard, retarded,
constitutive equation for the fluctuating pressure:

p(q, t) = c2ρ(q, t) + i
∫ t

0

ηb(t− s)qkvk(q, s)ds

+noise , (22a)

which is the Fourier transform of the usual equation:

−p(r, t) = −c2ρ(r, t) +
∫ t

0

ηb(t− s) div v(r, s)ds

+noise . (22b)

Let us now apply the same technique to πij(q), the
traceless part of Πij(q). Multiplying equation (14) by
πij(q) from the right yields the Langevin equation for
the traceless part of the momentum current tensor. In or-
der to evaluate the instantaneous couplings, one needs to
compute the static correlations of this tensor with the dis-
tinguished variables. Because of equation (18a) and of the
time reversal symmetry, one is left with the sole evaluation
of (Qkl(q)|πij(q)) for which neither tensorial nor time re-
versal symmetry constraints apply, in the long-wavelength
limit. However from momentum conservation:

iqj(Qkl(q)|πij(q)) = (Qkl(q)|iLJi(q))

= −(Q̇kl(q)|Ji(q)), (23)

where the first equality is correct up to order O(q2) due
to the traceless character of Qkl(q). The r.h.s. of equa-
tion (23) is equal to zero at every order in q, equation (9),
so that there is no instantaneous coupling of πij(q) with
the distinguished variables, in the leading order in q con-
sidered in the present paper. Hence, one is left with the
evaluation of the memory kernel, which splits into two
parts:

– the traceless momentum current tensor auto-
correlator which, in line with equation (20), we write in
the form:

(πkl|R′(t)|πij)
n

kBT
= ηs(t)∆ij,kl , (24)

and we call ηs(t) the time-dependent shear viscosity, as
it couples the momentum current to the strain rate,
see equation (28);

– the coupling of the traceless momentum current with
the corresponding orientational force, that we write as:(

Q̈kl|R′(t)|πij
) 1
Ω2

= −µ(t)∆ij,kl . (25)

For reasons similar to those used in equation (21):

iql(Πkl(q)|R′(t− s)|πij(q)) =

iql(πkl(q)|R′(t− s)|πij(q)) =

iqlηs(t− s)
kBT

n
∆kl,ij , (26a)

and:

iql
Jk(q)
n

∆kl,ij = im[qivj(q) + qjvi(q) − 2
3
δijqkvk(q)]

≡ −mτij(q) , (26b)

where τij(q) is the strain rate tensor, so that:

R(s)|Jk(q))
1

mkBT
iql(Πkl(q)|R′(t− s)|πij(q)) =

− τij(q, s)ηs(t− s). (26c)

Similarly:

−R(s)|Q̇kl(q))
1

2Ω2
(Q̈kl(q)|R′(t− s)|πij(q)) =

R(s)|Q̇kl(q))
1
2
∆kl,ijµ(t− s)

= Q̇ij(q, s)µ(t − s). (27)

Then, the generalised constitutive equation for πij(q, t)
reads:

πij(q, t) = −
∫ t

0

ηs(t− s)τij(q, s)ds

+
∫ t

0

µ(t− s)Q̇ij(q, s)ds+ noise. (28)

Combining equation (22a) and equation (28), one obtains:

Πij(q, t) = δijc
2ρ(q, t) + iδij

∫ t

0

ηb(t− s)qkvk(q, s)ds

−
∫ t

0

ηs(t− s)τij(q, s)ds

+
∫ t

0

µ(t− s)Q̇ij(q, s)ds + noise, (29)

which is exactly the Fourier transform of equation (3) of
Part I, once one has noted that Πij(q, t) is the opposite
of the stress tensor, σij(q, t).

To derive an equation of motion for Q̈ij(q), we again
make use of equation (14). For the instantaneous contribu-
tion, R(t)PQ̈ij(q), only the term involving the orientation
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in the projector P needs to be considered, the other terms
dropping out for tensorial or time-reversal symmetry con-
siderations. Since:

(Qkl(q)|Q̈ij(q)) = −(Q̇kl(q)|Q̇ij(q))

= −Ω2∆kl,ij , (30a)

R(t)PQ̈ij(q) = −ω2
0Qij(q, t) , (30b)

with the axial libration frequency:

ω0 = Ω/S . (30c)

The evaluation of the retarded couplings proceeds along
the same lines as for the momentum current tensor.
Defining:

(Q̈kl|R′(t)|Q̈ij)
1
Ω2

= Γ ′(t)∆kl,ij , (31a)

and:

Λ′ =
Ω2n

kBT
=

2n
5I

, (31b)

one easily obtains, with the help of equations (15b),
and (26b):

P iLR′(t− s)Q̈ij(q) = −|Q̇ij(q))Γ ′(t− s)
+Λ′|τij(q))µ(t − s) , (31c)

once one has noted that, because of the traceless character
of Q̈ij(q):

(Πkl|R′(t− s)|Q̈ij) = (πkl|R′(t− s)|Q̈ij) . (31d)

Collecting the various terms, one thus obtains:

Q̈ij(q, t) = −ω2
0Qij(q, t) −

∫ t

0

Γ ′(t− s)Q̇ij(q, s)ds

+Λ′
∫ t

0

µ(t− s)τij(q, s)ds

+noise . (32)

The same memory kernel, µ(t), occurs in the constitu-
tive equation for the orientational force, equation (32),
as response to a momentum gradient, and in the equa-
tion for the momentum current, equation (28), as a reac-
tion to an orientational current. This can be considered
as a general consequence of Onsager’s principle, and it
appears, here, naturally as the result of the use of the
Zwanzig-Mori formalism. Equation (32) is, as expected,
the Fourier transform of equation (4) of Part I, as briefly
argued in [10]. The Zwanzig-Mori formalism thus leads to
the microscopic derivation of the equations proposed, on
a phenomenological basis, in [1,9]. There are, neverthe-
less, already two bonuses. One is the precise definitions of
Λ′, equation (31b), in terms of quantities a priori known,
and of ω0, equation (30c), which can be obtained from

thermal averages of (Qij |Qkl) and (Q̇ij |Q̇kl). The sec-
ond bonus is the precise definitions, through R′(t) of the
four memory kernels, ηb(t), ηs(t), µ(t) and Γ ′(t), equations
(20, 24, 25) and (31a). We shall show, in the next two sec-
tions, that these expressions allow:

– on the one hand (Sect. 3) to precisely define under
which conditions, all the Brillouin intensities, derived or
recalled in Part I, are positive whatever the frequency,
within the scattering model used in [3];

– on the other hand (Sect. 4) to show, through Kubo’s
formulae, that these kernels can, directly or indirectly de-
pending on which one is considered, be measured as cor-
relation functions of q → 0 dynamical variables.

3 The Onsager relations
and the positiveness of the spectra

3.1 Summary of the light scattering results of Part I

In Part I, [3], making use of the equations of motions
(Eqs. (10, 11, 29) and (32)), we gave an expression for
the intensity of the VV light-scattering spectrum under
the assumption that the fluctuations of the dielectric ten-
sor could be written as the linear combination:

εij(q) = aδijρ(q) + bQij(q) , (33)

where a and b are phenomenological coefficients. Taking
the convention that the Laplace transform of f(t) would
be f(ω) = LT [f(t)](ω) = i

∫ ∞
0

dtf(t) exp(−iωt), this in-
tensity was expressed (see Eq. (36), Part I) in terms of all
the quantities defined in Section 2, and of 〈|Q0

⊥⊥′ |2〉 = S2,
see equation (6a). Using equations (30c) and (31b) which
relate ω0, Λ

′, Ω and S, the result obtained in Part I can
be cast into the form3:

IV V (q, ω) =
1
ω

Im

{
− 4b2

3
Ω2

D(ω)

+q2
[
a+

2bΛ′

3mn
r(ω)

]2

m2v2PL(q, ω)

}
, (34a)

where PL(q, ω) is the longitudinal phonon propagator:

PL(q, ω)−1 = ω2 − q2c2 − q2ωηL(ω)/mn , (34b)

with:

ηL(ω) = ηb(ω) +
4
3

[
ηs(ω) − Λ′

ω
D(ω)r(ω)2

]
(34c)

≡ kL(ω) − 4
3
Λ′

ω
D(ω)r(ω)2 (34d)

≡ ηb(ω) +
4
3
ηT (ω) , (34e)

D(ω) = ω2
0 + ωΓ ′(ω) − ω2 , (35)

3 In this section, we neglect in the expression of the intensi-
ties, the δ(ω) terms related to the Im(1/ω) contributions.
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r(ω) =
ωµ(ω)
D(ω)

· (36)

ηT (t), defined through equation (34e) is what we shall call
the transverse viscosity.

Similarly, the expression for the intensity of the VH
light-scattering spectrum, already derived in [9,1] within
the same model, was recalled in Part I (Eq. (48)); with
the present notations, it reads:

IV H(q, ω) =
b2

ω
Im

{
−Ω2

D(ω)

+ q2
[
Λ′r(ω)
mn

]2

cos2
θ

2
m2v2PT (q, ω)

}
, (37a)

where θ is the scattering angle and:

PT (q, ω)−1 = ω2 − q2ωηT (ω)/mn (37b)

is the transverse phonon propagator. It is convenient to
separate out the angular contribution in equation (37a)
by rewriting it in the form:

IV H(q, ω) = b2
[
sin2 θ

2
IBD(ω) + cos2

θ

2
IT (q, ω)

]
, (37c)

with:

IBD(ω) =
1
ω

Im
[
−Ω2

D(ω)

]
, (37d)

IT (q, ω) =
1
ω

Im

{
−Ω2

D(ω)

+q2m2v2

[
Λ′r(ω)
mn

]2

PT (q, ω)

}
. (37e)

3.2 Necessary conditions on the memory kernels

In the present part of Section 3, we show some general
properties of the four memory kernels ηb(t), ηs(t), µ(t)
and Γ ′(t) that can be derived from their microscopic ex-
pressions. These properties are of interest for the light
scattering spectra and, in particular, they are such that,
when fulfilled, the spectra are positive whatever the fre-
quency and the ratio b/a of equation (33).

Firstly, from their definitions, equations (20, 24, 25, 31a),
one checks that the memory kernels are real and have
even time parity. Furthermore, by taking the special linear
combinations:

π20 = [2πzz − πxx − πyy]/
√

12 , (38a)

Q0 = [2Qzz −Qxx −Qyy]/
√

12 , (38b)

ηs(t) and Γ ′(t) can be written as auto-correlation func-
tions similar to ηb(t):

ηs(t) =
n

kBT
(π20|R′(t)|π20) , (39a)

Γ ′(t) =
1
Ω2

(Q̈0|R′(t)|Q̈0). (39b)

Thus the Laplace-transforms of the memory kernels have
the usual properties described, e.g., in [11–13] (see also
Appendix C). In particular, this Appendix shows that
these Laplace transforms are analytic in the lower com-
plex half plane and that the inequalities:

Im ηb(ω) ≥ 0 , (40a)

Im ηs(ω) ≥ 0 , (40b)

ImΓ ′(ω) ≥ 0 , (40c)

hold for all complex ω with Imω < 0.
The mixed correlation function:

−Ω2µ(t) = (Q̈0|R′(t)|π20) , (41a)

can be read as an off-diagonal element of the matrix corre-
lator built on Q̈0 and π20. Since the imaginary part of the
Laplace transform of this matrix is positive semidefinite
(see Appendix C, equation (C.6)), one obtains, with the
help of equation (31b), the inequality:

[Imηs(ω)][ImΓ ′(ω)] − Λ′[Imµ(ω)]2 ≥ 0 , (41b)

for all ω in the lower complex half- plane. The system
of inequalities equations (40, 41b) is a generalisation of
Onsager’s relations to finite frequencies: from the micro-
scopic approach, one obtains that the imaginary part of
the matrix of kinetic coefficients is positive definite for any
frequency.

Let us mention one useful consequence. First by
Fourier back-transform:

Λ′µ(t)2 = Λ′
[∫

dω
π

cos(ωt)Imµ(ω)
]2

≤ Λ′
[∫

dω
π

|Imµ(ω)|
]2

≤
[∫

dω
π

ImΓ ′(ω)
] [∫

dω
π

Im ηs(ω)
]
, (42a)

where in the last line we used equation (41b). The last
relation implies that the translation-rotation coupling is
bounded by:

Λ′µ(t)2 ≤ ηs(t = 0)Γ ′(t = 0) . (42b)

3.3 Positiveness of the light scattering spectra
and further relations

The four inequalities, equations (40, 41b), turn out to
be sufficient to prove that the light-scattering spectra,
equations (34a) and (37a), are positive for any frequency.
The proof will be given for real frequencies only since
the algebra greatly simplifies. By similar methods, one
can extend the proof to hold for all frequencies in the
lower complex half-plane. Let us first recall that if A
is a symmetric complex matrix, then one can write
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Im(A−1) = −[ImA + (ReA)(ImA)−1(ReA)]−1. If
ImA is a positive definite matrix, one proves that
(ReA)(ImA)−1(ReA) has the same property, so that
−Im(A−1) is also a positive definite matrix; in particular,
its diagonal elements are positive 4. Let us now make use
of this property to prove the positiveness of the spectra,
starting with the VH spectrum written as equation (37c).

First:

IBD(ω) =
ω2

0ImΓ ′(ω)
[ω2

0 − ω2 + ωReΓ ′(ω)]2 + [ωImΓ ′(ω)]2
, (43)

so that IBD(ω) is always positive. Second, consider the
matrix:[

FT (q, ω)/Ω2 ∗
∗ ω2CT (q, ω)/(m2v2q2)

]
=

−
[

ωD(ω) qΩωµ(ω)/(mv)
qΩωµ(ω)/(mv) − ω + q2ηs(ω)/mn

]−1

(44a)

(here the matrix elements we are not interested in are
abbreviated by asterisks). One checks that, for real ω,
the imaginary part of the matrix on the r.h.s is positive
definite: indeed, its diagonal elements are positive (Eqs.
(40b, 40c)) while the corresponding 2 × 2 determinant is
proportional to the l.h.s. of equation (41b). Consequently,
so does the imaginary part of the l.h.s. of equation (44a).
In particular, the diagonal elements on the left-hand side
are positive. After some algebra one finds that:

ImFT (q, ω) = IT (q, ω) , (44b)

ImCT (q, ω) =
q2m2v2

ω
ImPT (q, ω). (44c)

As both IBD(ω) and IT (q, ω) are positive what-
ever ω real, the depolarised light-scattering spectrum,
equation (37c) is always positive. Also, from the form of
PT (q, ω), equation (37b), the sign of ImPT (q, ω) is the
same as that of ηT (ω); this implies:

Im ηT (ω) ≥ 0 . (44d)

Thus, in spite of its intricate expression, equation (34e),
one can prove that ImηT (ω) is always positive, a result
which will be obtained again through the Green-Kubo
technique in Section 4.

For the polarised spectrum, let us consider the similar
matrix:[

FL(q, ω)/Ω2 ωGL(q, ω)/(Ωmvq)
ωGL(q, ω)/(Ωmvq) ω2CL(q, ω)/(m2v2q2)

]
=

−


 ωD(ω)

√
4/3qΩωµ(ω)

mv

√
4/3qΩωµ(ω)

mv
c2q2 − ω2

ω + q2kL(ω)
mn



−1

.

(45a)
4 One easily includes the case where ImA is not invertible

due to a vanishing eigenvalue by adding an arbitrarily small
imaginary multiple of the unit matrix; this simply changes the
strict inequalities into weak ones. In order to avoid this compli-
cation, we shall use equations (40, 41b) as strict inequalities.

Again, the imaginary part of the matrix on the r.h.s
of equation (45a) is positive definite; its diagonal elements
are positive, equations (40), while the corresponding 2×2
determinant is proportional to:

[ImΓ ′(ω)][Im ηb(ω) +
4
3
Im ηs(ω)] − 4

3
Λ′[Imµ(ω)]2 .

(45b)

This term is also positive, because of equations (41b)
and (40a, 40c). Explicit evaluation of the inverse of the
matrix on the r.h.s. of equation (45a) yields:

ImFL(q, ω) =
3
ω

Im
{ −Ω2

3D(ω)

+ q2
[
2
3
Λ′r(ω)
mn

]2

m2v2PL(q, ω)
}
, (45c)

ImGL(q, ω) =
√

3
ω
q2m2v2Im

{
2
3
Λ′r(ω)
mn

PL(q, ω)
}
,

(45d)

ImCL(q, ω) =
q2m2v2

ω
ImPL(q, ω). (45e)

Since the imaginary part of the matrix on the l.h.s.
of equation (45a) is positive definite, this is also true
for the matrix whose elements are FL(q, ω), GL(q, ω) and
CL(q, ω). In consequence:

IL(q, ω) = a2ImCL(q, ω) +
2√
3
ab ImGL(q, ω)

+
b2

3
ImFL(q, ω) ≥ 0. (45f)

Since

IV V (q, ω) = b2IBD(ω) + IL(q, ω) , (45g)

the VV spectrum, equation (34a), is positive, whatever a
and b. (Note that the same technique could be applied to
the HH spectrum, equation (43) of Part I, to prove that
it is also positive, whatever the scattering angle.) Equa-
tion (45e) can also be used to prove that Im ηL(ω) > 0,
a conclusion which already resulted from equations (44d)
and (40a). Let us stress that the positiveness of IV V (q, ω)
for any ω, whatever q, is not a trivial result as IL(q, ω) is
the sum of a q-independent term, proportional to IBD(ω),
and of a q-dependent term. One could naively think that
IV V (q, ω) could be always positive only if the same would
be true for this q-dependent term. Figure 3 of Part I, [3]
shows that this is not the case. In fact, though equa-
tion (41b) does not invoke q, it insures that ImΓ ′(ω) is
large enough, whatever ω, for the sum of the two terms of
IL(q, ω) to be positive, independently of the value of q. A
similar argument holds for the IV H(q, ω) spectrum.
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4 The Green-Kubo approach
to the memory kernels

4.1 Preliminary remarks

The comparison between measured Brillouin spectra and
their predicted intensities (Eqs. (34a) and (37a)) requires
the knowledge of the four memory kernels ηb(t), ηs(t), µ(t)
and Γ ′(t). Although microscopically well defined, those
cannot be evaluated exactly, so that in practice, they are
frequently taken as empirical fit functions. Whereas the
correct memory kernels are guaranteed to reflect all the
restrictions of the correlated motion of the translational
and orientational degrees of freedom, i.e. automatically
fulfill the relations, equations (40a, 40b, 40c) and (41b),
this needs not be true for these empirical functions. Hence,
one has to carefully choose their parameters so that these
relations are fulfilled.

A possible intermediate approach consists in obtaining
information on those memory kernels through MD calcula-
tions of some realistic model of the supercooled liquid un-
der consideration. Because the memory kernels are q → 0
limits of correlation functions of specific variables, they
can, in principle, be computed from these MD calcula-
tions. Yet, these kernels, equations (20, 24, 25) and (31a),
are written in terms of the reduced operator R′(t). As the
latter has no easy formulation, this apparently reduces
drastically the value of the preceding remark. We show, in
the present section, that the microscopic approach of Sec-
tion 2 allows for the determination of expressions of ηb(t),
and ηT (t), the bulk and transverse viscosities, which co-
incide with the usual Green-Kubo formulae: they can be
directly determined as the correlation functions of vari-
ables accessible in a MD calculation.

Conversely, no such direct determination of Γ ′(t) and
µ(t) is possible; their Laplace transforms, can be obtained
through the computation of the Laplace transforms of the
correlation functions of other dynamical variables but the
determination of Γ ′(ω) and µ(ω) will be rather indirect, as
we shall see; for technical reasons, we shall start with this
second aspect and will turn, later on, to the determination
of the viscosity kernels.

Let us start by recalling that, in equation (32), the
‘noise term’ is equal to R′(t)Q̈ij(q) so that one can rewrite
this equation as:

R′(t)Q̈0(q) = Q̈0(q, t) + ω2
0Q0(q, t)

+
∫ t

0

Γ ′(t− s)Q̇0(q, s)ds

−Λ′
∫ t

0

µ(t− s)τ0(q, s)ds, (46)

with:

τ0(q) = [2τzz(q) − τxx(q) − τyy(q)]/
√

12. (47)

When computing µ(t) or Γ ′(t) through equations
(25, 31a), the q → 0 limit is taken, and τ0(q) is O(q)
(see equation (26b)); the last term of equation (46) may

thus be dropped. Multiplying both sides of equation (46),
from the left, by Q̈0, performing a thermal average and a
Laplace transform yields:

Ω2Γ ′(ω) = LT [(Q̈0|R′(t)|Q̈0)](ω)

= (ω2
0 + ωΓ ′(ω) − ω2)LT [(Q0(t)|Q̈0)](ω)

+[ω − Γ ′(ω)](Q0|Q̈0)· (48a)

As (Q̈0|Q0) = −(Q̇0|Q̇0) = −Ω2, the Ω2Γ ′(ω) drops out
of equation (48a): Γ ′(ω) is not directly determined by con-
sidering the ‘noise term’: its indirect determination is nev-
ertheless possible through equation (48a) as:

LT [(Q0(t)|Q̈)](ω) =
ωΩ2

D(ω)
· (48b)

The l.h.s. of equation (48b) can be obtained from the cor-
relation of Q0(t) with Q̈0. Nevertheless, it is simpler to
write:

LT [(Q0(t)|Q̈0)](ω) = LT [(Q̈0(t)|Q0)](ω)
= −ω2LT [(Q0(t)|Q0)](ω) + ω(Q0|Q0) . (48c)

Equations (48b, 48c) can be recast into the form:

LT [(Q0(t)|Q0)](ω) =
S2

ω

[
1 − ω2

0

D(ω)

]
· (48d)

The fancy technique we have just used simply recov-
ers equation (34) of Part I which was directly obtained
from the phenomenological equations of motion. The lat-
ter have been microscopically derived in Section 2, and
this derivation implied the neglect of the noise term term
R′(t). The above given proof of equation (48d) can be
considered as a consistency check for the use of the ‘noise
term’ to derive valuable results, a technique we shall now
use to derive useful expressions for ηb(t) and ηT (t).

Before doing that, let us multiply the q → 0 limit
of equation (46), on the left, by π20. Performing similar
manipulations as above, one obtains:

−Ω2µ(ω) = LT [(π20|R′(t)|Q̈0)](ω)
= D(ω)LT [(Q0(t)|π20)](ω)

−[ω − Γ ′(ω)](π20|Q0) , (49a)

where (π20|Q0) is equal to zero, due to equations (23) and
(9). This yields:

µ(ω) = −D(ω)
Ω2

LT [(Q0(t)|π20)](ω) , (49b)

or, equivalently:

r(ω) = − ω

Ω2
LT [(Q0(t)|π20)](ω) . (49c)

It should be noted that r(ω)/ω is of order O(ω−3) for fre-
quencies ω 
 ω0; this is consistent with the ‘sum rule’
associated with (Q0|π20) = 0. r(ω) is the function which
couples the (longitudinal and transverse) phonon propaga-
tor to the light scattering mechanism via the orientational
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part of these excitations, see equations (34a) and (37a).
Equation (49c) shows that r(t) can be directly obtained
as the time derivative of the correlation function of Q0(t)
with π20, but that µ(t) is not directly accessible; it can
be obtained only once r(ω) and D(ω)−1 have been deter-
mined by the MD calculation.

4.2 Expressions of ηT(t) and ηb(t) as time correlation
functions

Let us now use the same ‘noise term’ technique to ex-
press ηT (t) and ηb(t) as auto-correlation functions of some
dynamical variables. The ‘noise term’ of equation (28) is
equal to R′(t)π20(q), and, in the same q → 0 limit, this
equation simplifies into:

R′(t)π20 = π20(t) −
∫ t

0

µ(t− s)Q̇0(s)ds. (50a)

Multiplying this equation from the left by π20, and per-
forming the same manipulations as before yields, with the
help of equation (24):

kBT

n
ηs(ω) = LT [(π20(t)|π20)](ω)

−µ(ω){ωLT [(Q0(t)|π20)](ω) − (Q0|π20)} ·
(50b)

Using equations (49b), (23) and (9), equation (50b) trans-
forms into:

ηs(ω) =
n

kBT
LT [(π20(t)|π20)](ω) +

Λ′

ω

[ωµ(ω)]2

D(ω)
· (50c)

From the definition of ηT (t), equation (34e), this equation
reads:

ηT (t) =
n

kBT
(π20(t)|π20) . (50d)

Equation (50d) is the link between the usual Navier-Stokes
approach to the dynamics of supercooled liquids and the
most sophisticated approach of the present series of pa-
pers, which takes explicitly into account the rotational mo-
tion of the molecules (the usual approach is recovered by
formally putting µ(t) ≡ 0). ηT (ω) (see equation (37b)) is
the memory function which governs the transverse phonon
propagator: within the Green-Kubo formalism of equa-
tion (50d), this transverse viscosity is proportional to the
correlation of the traceless part of the stress tensor, π20,
independently of the existence of a rotation-translation
coupling. In other words, the pure center-of-mass viscos-
ity, ηs(t), is not the quantity directly measured by the
correlation function of π20: ηs(t) must be deduced from
the simultaneous determination of ηT (ω), r(ω) and D(ω),
quantities which can all be obtained, at least in principle,
as correlation functions of some properly chosen variables,
as we have just shown. Equation (50d) also proves directly,
see equation (44d), that ImηT (ω) is always positive, being
the Fourier transform of a auto-correlation function.

The same type of technique can be used to determine
ηb(t). In the q → 0 limit, equation (22a) reads:

R′(t)p = p(t) − c2ρ(t) = R(t)[p− ρ(ρ|p)/(ρ|ρ)] , (51a)

once equations (4) and (18c) have been taken into account,
or:

R′(t)p = R(t)Qnp . (51b)

Equation (51b) introduces the variable Qnp, which is the
part of the pressure which is orthogonal to the density.
Because of the existence of a Q operator on the left hand
side of R′(t) (see Appendix B) which projects out the ρ
variable:

(Qnp|R′(t) = (p|R′(t) . (51c)

Thus, equation (20) can be written as:

ηb(t) =
n

kBT
(Qnp(t)|Qnp) . (51d)

Equation (51d) is the analog of the Green-Kubo formula-
tion of the bulk viscosity within the usual Navier-Stokes
formalism: as the rotation-translation coupling does not
play a role in the bulk viscosity, this usual formulation re-
mains exact in the more sophisticated present approach.

Here a comment is in order. Since we did not deal with
energy fluctuations in the projector, the correlation func-
tion ηb(t) decays to a non-zero constant even for times
much larger than the structural relaxation time. It is
therefore convenient to define a new correlation function
η̃b(t) that vanishes at long times by an appropriate sub-
traction. One can work out the constant from thermody-
namic considerations and find:

ηb(t) = η̃b(t) +mn(c̃2 − c2) , (52)

where c̃ is the adiabatic sound velocity. For the Laplace
transforms this implies the relation:

ωηb(ω) = ωη̃b(ω) +mn(c̃2 − c2) . (53)

In all correlation functions considered so far, the bulk vis-
cosity appeared only via the longitudinal phonon propa-
gator. Using the preceding equation PL(q, ω) reads:

PL(q, ω)−1 = ω2 − c̃2q2 − q2ω

mn
[η̃b(ω) +

4
3
ηT (ω)] , (54)

which shows that the adiabatic sound velocity governs the
propagation of longitudinal phonons. To simplify nota-
tions, in the remaining part of the paper, we shall drop
the tilde again and treat c as the adiabatic sound velocity
and ηb(t) as decaying to zero for long times.

5 Comparison with previous theoretical
approaches

5.1 Introduction

The discussions performed in [1] and [9] have made clear
that the set of equations (29) and (32) are convenient
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tools to describe the light scattering spectra of molecular
liquids, in their normal and in their supercooled states,
when those equations are supplemented by the dielectric
model of equation (33). Indeed as soon as the four memory
functions ηb(t), ηs(t), µ(t) and Γ ′(t) are mimicked by rea-
sonably decreasing functions (characterised, inter alia, by
relaxation times, τ , that increase with decreasing temper-
ature) the most characteristic features of the VH spectra
can be described:

– The back scattering spectrum is mostly characterised
by a broad high-frequency libration mode, in the vicin-
ity of a frequency ω0/2π, and by a low-frequency cen-
tral mode, the line width of which decreases upon cooling.
Both features can be approximately reproduced by equa-
tion (37d) with the help of the expression of D(ω) given
by equation (35), as soon as a reasonable Γ ′(ω) is chosen.

– The shape of the q-dependent part of the VH spec-
trum has been discussed in detail in [1]. It was shown
that equations (37a) and (37b) allowed to adequately de-
scribe the existence of a Rytov dip [14] in a normal molec-
ular liquid, this dip being a very narrow central peak,
wave-number and scattering-angle dependent, which is
subtracted from the much broader central mode. This
dip appears in the high-temperature regime when, for
all the frequencies of the central mode, ωτ � 1. The
ωτ 
 1 regime, which is characterised by the appear-
ance of the Brillouin spectrum of a transverse propaga-
tive mode, is also well described by these equations, pro-
vided reasonably decreasing functions are also taken for
the three remaining memory functions. In particular, the
transverse sound velocity, characterised by the plateau
value of ωηT (ω) at frequencies 1 � ωτ � ω0τ is decreased
by the coupling of the molecular orientation to the trans-
verse phonon through µ(ω)2. Finally, in view of the form
of ηL(ω), see equation (34e), the same is true for the sound
velocity of the longitudinal phonons.

In this section, we shall compare the results which can
be obtained through equations (29) and (32) with those
resulting from the two other papers (or series of papers)
already mentioned which make use, in different ways, of a
Mori-Zwanzig technique to describe the liquid dynamics.

5.2 The Andersen-Pecora approach

The Anderson and Pecora approach [4] was only used to
study the VH spectrum of a molecular liquid at high tem-
perature 5. Indeed, their work was devoted to the expla-
nation of the Rytov dip [14]; and their analysis made use
of a dielectric fluctuation model identical to the one of the
present paper.

In the work of Andersen and Pecora, the mass den-
sity, the mass current and a second-rank tensor propor-
tional to Qij were the sole ‘slow variables’ of the theory,
within the usual Zwanzig-Mori distinction between ‘slow’

5 We shall not discuss here the papers of Keyes and Kivelson
[J. Chem. Phys. 54, 1786 (1971), ibid. 56, 1057 (1972)] which
are, basically, along the same line.

and ‘fast’ variables. In other words, they implicitly as-
sumed that Q̇ij had a much faster dynamics than Qij ,
so that the former could be treated on the same footing
as the other fast variables. Furthermore, they performed
a Markov approximation on all the retarded interactions
that needed to be taken into account, which is equivalent
to taking the ωτ � 1 limit of the corresponding kernels.

A summary of the result of their theory, within this
Markov approximation, can be found in the book of Berne
and Pecora [12]. The corresponding equations read, with
notations adapted to the present paper:

πij(q, t) = −Γ ′′
11τij(q, t) − iΓ ′

12Qij(q, t), (55)

Q̇ij(q, t) = −iΓ ′
21τij(q, t) − Γ22Qij(q, t). (56)

Here, the kinetic coefficients Γ ′′
11, Γ22 are real quantities,

whereas Γ ′
12, Γ

′
21 are purely imaginary, and are related

by Onsager’s principle. Equation (55) makes it clear that
πij(q, t) depends, here, linearly on Qij(q, t), and not on
its time derivative, as is the case in equation (28), while
equation (56) does not contain a second time derivative of
Qij(q, t), contrary to equation (32).

The form of the Zwanzig-Mori technique, see equa-
tion (14), used in the present paper allows to derive pre-
cise expressions for the three relaxation kernels associated
with the variables of the problem (time dependent gen-
eralisations of Γ ′′

11, Γ
′
12 and Γ22), in terms of a reduced

time evolution operator. Calculating from the correspond-
ing equations of motion the VH spectrum and compar-
ing the results with equations (37d, 37e), one can ex-
press the three Andersen-Pecora kernels as functions of
ηs(ω), µ(ω), Γ ′(ω), Λ′ and ω0. One can thus study their
ωτ � 1 and ωτ 
 1 regimes. This study will show that
the ωτ � 1 limit gives reasonable results, which are, as ex-
pected, in line with the Andersen-Pecora Markov approxi-
mation. Conversely, the ωτ 
 1 limit yields a complicated
behaviour for the same three kernels which cannot be eas-
ily modeled. This will make the Andersen-Pecora method
inappropriate for the study of a molecular supercooled liq-
uid, as we shall now see.

Indeed, using the same technique as in Section 2, one
can derive the equations of motion related to Πij(q, t) and
Qij(q, t) when one restricts the variables to the Anderson-
Pecora set. This means that, e.g. the projection opera-
tor P of equation (13) has been replaced by:

P̂ = |Qkl(q))
1

2S2
(Qkl(q)| + |ρ(q))

c2

m2v2
(ρ(q)|

+|Jk(q))
1

m2v2
(Jk(q)| . (57)

P̂ leads to the new orthogonal projector Q̂ = 1 − P̂ , in
terms of which a new reduced time evolution operator
R̂(t) can be defined. One then finds that the equation
for p(q, t), equation (22a), is not modified, except for the
change of R′(t) into R̂′(t), which formally changes ηb(t)
into η̂b(t). Evaluating the corresponding Green-Kubo re-
lation reveals that η̂b(t) = ηb(t). Since the pressure fluctu-
ations are irrelevant for the VH spectrum discussed in [4],
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we do not discuss further those aspects. Conversely, the
equation for πij(q, t) now turns out to be:

πij(q, t) = −
∫ t

0

η̂s(t− s)τij(q, s)ds

+
∫ t

0

λ(t− s)Qij(q, s)ds+ noise, (58)

η̂s(t) being the complete analog of ηs(t). Equation (58)
contains a linear term in Qij(q, t), as in equation (55),
and not in Q̇ij(q, t), as was case for equation (28) while
the corresponding retarded interaction is expressed by:

(Q̇ij |R̂′(t)|πkl)
1
S2

= −λ(t)∆ij,kl , (59)

where Q̇ij and πkl are respectively odd and even with
respect to time inversion; thus λ(t) is an odd function of t,
contrary to all the memory functions considered up to now
in the present paper. The most important change arises,
nevertheless, from the fact that the equation of motion for
Qij(q, t) has to be derived from:

∂tQij(q, t) = Q̇ij(q, t) , (60)

an equation which replaces equation (12). A calculation
similar in every respect to the one performed below equa-
tion (29) yields:

Q̇ij(q, t) = −Λ′

ω2
0

∫ t

0

λ(t− s)τij(q, s)ds

−
∫ t

0

M(t− s)Qij(q, s)ds + noise, (61)

with:

(Q̇ij |R̂′(t)|Q̇kl)
1
S2

= M(t)∆ij,kl. (62)

Equations (58) and (61) are, obviously, the non-Markovian
form of equations (55) and (56). Ignoring temperature
fluctuations, the previous relations are exact, and allow
us to relate the memory kernels M(ω), η̂s(ω), λ(ω) to the
ones already used in this paper by deriving from equa-
tions (58,61), through the same methods as used in [1],
the expression of the VH spectrum and comparing it with
equation (48) of Part I. For M(ω), this can be done by
simply computing the correlation function of Q⊥⊥′ which
is responsible for the pure back-scattering spectrum (see
Part I for a definition of the geometry used). Solving equa-
tion (61) in this simple case yields:

LT [(Q⊥⊥′(q, t)|Q⊥⊥′(q))](ω) =
S2

ω −M(ω)
· (63)

Comparison with equation (34) of Part I, with the help
of equation (6a), leads to the relation between Γ ′(ω)
and M(ω):

M(ω) =
ω2

0

ω − Γ ′(ω)
· (64)

In order to gain some insight into the Markov approx-
imation, a priori valid at high temperatures, let us dis-
cuss the properties of M(ω) upon cooling the system. To
simplify the discussion, we consider a Maxwell model for
Γ ′(ω):

Γ ′(ω) = iγ +
iΓ 2

0 τ

1 + iωτ
, (65)

which mimics its frequency dependence for frequen-
cies much lower than typical liquid frequencies, i.e. for
ω � ω0. Then, all the fast processes are hidden in a
weakly temperature-dependent background, iγ, whereas
the temperature-sensitive structural relaxation is modeled
by a decreasing exponential in the time domain, corre-
sponding to a temperature insensitive amplitude, Γ 2

0 , and
a relaxation time, τ , that increases by orders of magnitude
upon supercooling the liquid.

At high temperature, i.e. for ωτ � 1, under the pos-
sible conditions ω, γ, ω0 � Γ 2

0 τ , which simply imply that
even at high temperatures Γ 2

0 τ is substantially larger than
the width of the central peak, equation (37d), one obtains:

M(ω) � i
ω2

0

Γ 2
0 τ

· (66)

This is the Andersen-Pecora result in its Markov approx-
imation M(ω) = iΓ22 with Γ22 ∼ τ−1. Conversely, at low
temperature, and under the same conditions, M(ω) will
be approximated by:

M(ω) � −ω2
0ω

Γ 2
0 + iωγ

� −ω
2
0ω

Γ 2
0

; (67)

at low frequencies, M(ω) is a real quantity proportional
to ω and independent of the relaxation time. The vanish-
ing of the imaginary part of M(ω) at low frequencies im-
plies that the area of M(t) cancels at low temperatures.
Whereas the shape of M(t) is clearly model dependent,
the cancellation of areas of M(t) is a general feature of
supercooled liquids. Contrary to Γ ′(t), there is no step
process in M(t) with a diverging time scale upon cooling.
It is thus fruitless to try to model the temporal evolu-
tion of M(t) since the common features of an increasing
structural relaxation time are masked in this approach.

We can similarly evaluate the Andersen-Pecora mem-
ory kernels η̂s(ω), and λ(ω) by solving the dynamics for
the variable Q⊥‖(q, t) that also contributes to the VH
scattering. Using the methods of [1], one obtains:

LT [(Q⊥‖(q, t)|Q⊥‖(q))](ω) =
S2

ω −M(ω)

−
[

Λ′

mnω2
0

λ(ω)
ω −M(ω)

]2
q2m2v2

ω − q2ηT (ω)/mn
, (68)

with the transverse viscosity given by:

ηT (ω) = η̂s(ω) − Λ′

ω2
0

λ(ω)2

ω −M(ω)
· (69)
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A comparison between the second term of the r.h.s of
equations (68) and (37e) yields the relation between the
two sets of memory kernels:

λ(ω) = −i
ω2

0µ(ω)
ω − Γ ′(ω)

= −iµ(ω)M(ω), (70)

η̂s(ω) = ηs(ω) +
Λ′µ(ω)2

ω − Γ ′(ω)
(71a)

= ηs(ω) +
Λ′

ω2
0

µ(ω)2M(ω) . (71b)

The high-temperature limit of M(ω), equation (66),
yields, with a Debye model for µ(ω) and ηs(ω), the Markov
limits obtained in [4]: λ(ω) becomes an imaginary num-
ber independent of τ , while η̂s(ω → 0) is the sum of two
terms, both imaginary and proportional to the relaxation
time. One originates from ηs(ω → 0), while the second,
negative, is the ω → 0 limit of Λ′µ(ω)2M(ω)/ω2

0; this
explains why, in the Andersen-Pecora approach, the vis-
cosity, −iηs(ω → 0), is the sum of two positive terms.

Conversely, the difficulty of an a priori modeling
of M(ω) transfers to the two other memory kernels, η̂s(ω)
and λ(ω). This explains why a näıve modeling by simple,
Debye-like, relaxation functions, consistent both with the
high-temperature Markov results and the different time re-
versal symmetries of the kernels, is unable to yield correct
physical results in the supercooled regime. Appendix D
shows, indeed, that the low-temperature limit of such an
attempt leads to the existence of transverse propagative
modes coupled to molecular orientation motions, but this
coupling increases the sound velocity instead of decreas-
ing it.

Summarizing this part, we have shown that a Mori-
Zwanzig procedure as applied by Andersen and Pecora [4]
allows to derive constitutive equations through which the
light scattering problem can be properly formulated as
long the frequency dependence is kept on a formal level.
Conversely, when one expresses these memory kernels
in terms of those obtained in Section 2, one discovers
that their modeling as time-dependent memory kernels
is extremely difficult. This problem can be circumvented,
if one models them directly, as inspired by equations
(64, 70, 71a), but this procedure is equivalent to consid-
ering Γ ′(ω), µ(ω), and ηs(ω) as fundamental quantities.

5.3 Comparison with the general expressions
for light scattering

The expressions for the VV and VH intensities obtained
in Part I and discussed again in Section 4, equations (34a)
and (37a), have been obtained under the physical assump-
tion that the fluctuations of the local dielectric tensor,
δεij(q, t), could be expressed through equation (33), i.e.
depend, in first order, only on the density and the orien-
tational fluctuations. Conversely, the expressions obtained
in [5] did not make use of a specific form for δεij(q, t). We
shall show, in this last part of Section 5, that those two

expressions are, indeed, a specialization of the general re-
sults obtained in [5]. We also discuss the respective merits
of these two complementary approaches.

The basic idea of [5] was to express the finite wave-
number fluctuations of the dielectric tensor in terms of
the long-wavelength limit of the two special linear combi-
nations:

s00(q) = [εxx(q) + εyy(q) + εzz(q)]/3 , (72a)

t20(q) = [2εzz(q) − εxx(q) − εyy(q)]/
√

12 . (72b)

Within the present light-scattering model, these two quan-
tities reduce to the contributions of the density and the
orientation fluctuations, respectively:

s00(q) = aρ(q) , (73a)

t20(q) = bQ0(q) . (73b)

In [5], the VV spectrum was expressed, using notations
that have been adapted to the current paper, as:

IV V (q, ω) = Im

{
S(ω) +

4
3
T (ω) +

m2v2

c2ω

(
∂s00
∂ρ

)2

T

+
[
∂s00
∂ρ

)
T

− ωaV V (ω)
]2

[LT [(ρ(q, t)|ρ(q))](ω)

−m
2v2

c2ω

]
+ ξ(ω)2LT [(Θ(q, t)|Θ(q))](ω)

+ 2ξ(ω)
[(

∂s00
∂ρ

)
T

− ωaV V (ω)
]
LT [(ρ(q, t)|Θ(q))](ω)

}
.

(74)

Similarly, the VH intensity was expressed as:

IV H(q, ω) = Im

{
T (ω)

+
q2

ω
cos2

θ

2
[ωaVH(ω)]2m2v2PT (q, ω)

}
. (75)

The transverse phonon propagator is given directly in
terms of the transverse viscosity, ηT (ω), as in equa-
tion (37b). As already alluded in the Introduction, the
price to be paid for these two general results was the in-
troduction of ten frequency-dependent quantities, namely,
the scalar background spectrum S(ω), the tensor back-
ground spectrum T (ω), the two Pockels’ coupling func-
tions, aV V (ω) for polarised and aVH(ω) for depolarised
scattering, and the temperature coupling ξ(ω), while the
three hydrodynamic correlation functions related to the
density, ρ(q), and kinetic temperature, Θ(q), were ex-
pressed in terms of the transverse viscosity, ηT (ω), the
longitudinal viscosity, ηL(ω), the heat conductivity, λ(ω),
the dynamic specific heat, cV (ω), and the tension coeffi-
cient, β(ω), respectively. The singular hydrodynamic be-
havior manifested itself explicitly in the three correlation
functions just mentioned.
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Let us relate those quantities to the one derived in
the present paper and demonstrate numerous simplifica-
tions that occur in the density-and-orientational-decay-
channels-only model. First, the temperature coupling is
given by:

ξ(ω) = ξ
cV (ω)
cV

− cV (ω)
c0V

ω
LT [(Q̃s00(t)|Q̃eP )](ω)

kBT 2
, (76)

where ξ is a linear function of the energy fluctuations in
the q → 0 limit and Q̃ = 1 − P̃ is a projection operator
orthogonal to the standard Kadanoff-Martin projector, P̃ .
The latter projects, in [5], on five variables, ρ(q) and J(q),
as in the present paper, and on the temperature fluctua-
tions, T (q), not introduced here, and proportional to the
energy fluctuations, e(q).

P̃ = |ρ(q))
c2

m2v2
(ρ(q)| + |Jk(q))

1
m2v2

(Jk(q)|

+|T (q))
cV
kBT 2

(T (q)| + O(q2) . (77)

Because energy fluctuations are not considered in the
present approach, ξ ≡ 0. Also, s00(q) is proportional to
ρ(q), equation (73a), so that Q̃s00 = 0, ξ(ω) ≡ 0.

Second, in [5], the scalar and the tensor background
spectra are defined as:

S(ω) = −kBT
2ξ(ω)2

ωcV (ω)
+
kBT

2

ωcV
ξ2

+LT [(s00(t)|Q̃s00)](ω) , (78a)

T (ω) = LT [(t20(t)|t20)](ω) . (78b)

The preceding results imply:

S(ω) ≡ 0 , (79a)

T (ω) = b2LT [(Q0(t)|Q0)](ω) . (79b)

Third, from equation (73a), (∂s00/∂ρ)T = a while the
dynamic Pockels’ coupling functions are given, in [5], as:

aV H(ω) = LT [(π20(t)|t20)](ω)/m2v2 , (80a)

aV V (ω) =
2
3
aVH(ω) +

β(ω)Tξ(ω)
ωcV (ω)

− βTξ

ωcV

−LT [(p(t)|Q̃s00)](ω)/m2v2 . (80b)

As ξ(ω), ξ and Q̃s00 are all equal to zero, one obtains:

aV V (ω) =
2
3
aVH(ω) . (80c)

Let us look at the results for the VV light scattering in-
tensities. One observes that terms involving dynamic cor-
relation functions of the kinetic temperature evaluate to

zero. One is thus left with the density correlation func-
tions which, if energy fluctuations are ignored, reads in
agreement with equation (29a) of Part I:

LT [(ρ(q, t)|ρ(q))](ω) =

m2v2

ω

[
1
c2

+
q2

ω2 − q2[c2 + ωηL(ω)/mn]

]
. (81)

Equation (81) allows to group the terms proportional to
m2v2 and one ends up with:

IV V (q, ω) = Im

{
4
3
T (ω) +

a2m2v2

c2ω

+
[
a− 2

3
ωaVH(ω)

]2
m2v2q2/ω

ω2 − q2c2 − q2ωηL(ω)/mn

}
, (82)

T (ω) and aV H(ω) being defined through equations (79b)
and (80a), respectively. Furthermore in agreement with
equation (48d) and equation (34) of Part I, T (ω) can be
written as

T (ω) = b2
S2

ω

(
1 − ω2

0

D(ω)

)
, (83)

which is here a simple definition of ω2
0/D(ω). In the same

manner, from equations (80a, 73b, 49c, 31b), one obtains:

−ωaVH(ω) =
bΛ′

mn
r(ω) , (84)

where, similarly to the case of ω2
0/D(ω), r(ω) is simply de-

fined through the Laplace transform of (π20(t)|t20), equa-
tion (80a). One sees that equation (82) has been cast into
a form identical to equation (34a), while a similar identi-
fication holds between equation (75) and equation (37a).

The reduction of equations (74) and (75) to equa-
tions (34a) and (37a) shows the comparative interests of
the approach of [5] and of the present one. The method
of [5] does not depend on the system under study and
allows for temperature (or energy) fluctuations: as soon
as the scattering model, equation (33), is introduced, and
the energy fluctuations are neglected, the equations of [5]
reduce to those of the present model, depending on four
functions T (ω), aVH(ω), ηL(ω) and ηT (ω), which are un-
determined in this framework. Conversely, the more re-
stricted approach developed in the present series of papers
gives precise definitions of these four quantities in terms of
more fundamental memory kernels Γ ′(ω), µ(ω), ηb(ω) and
ηs(ω), and also gives the relationships through which the
four first functions are related to the second ones via the
constants Λ′ and ω0 for which definitions can be given. Yet
the restricted approach has its own price to be paid: one
has to start the whole work again if additional variables
need to be introduced into the model.

6 Summary and final remarks

In a liquid formed of rigid molecules, the dynamics of the
system has to take into account both the motion of the
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molecular centers of mass and the orientational motion
of the molecules. In the long-wavelength limit, the first
one gives rise to the hydrodynamic modes, to which the
orientational motions are partly coupled, while this ori-
entational dynamics also gives rise to motions that are
wave-vector independent in the same limit. [9,1] and [3]
proposed a phenomenological set of equations to describe
this coupled dynamics in the case of linear molecules, and
a phenomenological expression for the local fluctuation
of the dielectric tensor: this fluctuation was expressed in
terms of the density and orientational variables entering
the dynamical equations.

The original objective of the present paper was twofold
– one was to provide a complete, microscopic, derivation
of these dynamical equations; the second was to compare
the expression for the light scattering intensities resulting
from these equations with those obtained with two other
approaches [4,5].

Both goals have been achieved. On the one hand, the
use of a Zwanzig-Mori formalism has allowed to com-
pletely derive these dynamical equations; in the course
of this derivation, we have obtained the microscopic ex-
pressions of the two parameters and of the four memory
functions entering those equations. On the other hand, the
comparison with the two other Zwanzig-Mori approaches
has also brought important results. One of them is related
to the choice of Andersen and Pecora [4] of not including
Q̇ij(q) in their set of variables. This choice, which is suffi-
cient at high temperature, when the Markov approxima-
tion can be made on the corresponding memory kernels,
turns out to be inappropriate for the study of supercooled
liquids: at low temperatures Q̇ij(q, t) is as ‘slow’ a vari-
able as Qij(q, t). The most important consequence of the
absence of Q̇ij(q, t) in the set of selected variables is the
change in the equation of motion of Qij(q, t): it trans-
forms it from a second order differential equation with a
memory kernel acting on Q̇ij(q) into a first order differ-
ential equation with a memory kernel acting on Qij(q).
The formal neglect of Q̇ij(q) in the set of ‘slow’ variables
is possible but the corresponding memory kernels have
a non-trivial time evolution, which cannot be predicted
without using the results of the present theory. The sec-
ond result is that the present formulation of the theory
is, indeed, a reduction of the general theory of [5] which
can be derived from simplifications consistent with the
phenomenological model of the dielectric tensor, and with
the restricted set of variables used here.

The present Zwanzig-Mori approach also led to two
important byproducts. One is the existence of conditions,
equations (40, 41b), which have to be fulfilled by the
Laplace transforms of the memory functions. These con-
ditions are important because they are sufficient to in-
sure that all the light scattering intensities will be posi-
tive, whatever the frequency, within the phenomenological
model of the fluctuations of the dielectric tensor used here.
A second byproduct is the set of Green-Kubo formulae we
have derived in Section 4.3: we have shown that the cor-
relation functions of some variables, not experimentally
accessible by light scattering techniques, but which may

be numerically obtained from MD computations of mod-
els of these molecular (supercooled) liquids, give access to
definite combinations of the Laplace transforms of these
memory functions. This is a possible way of obtaining an
information on them.

Some results of the present paper provide a direct help
to the experimentalists, when analysing the light scat-
tering spectra of molecular supercooled liquids formed of
rigid linear molecules, or of molecular liquids for which
such an approximations is reasonable. One of them is the
already mentioned necessary conditions on the memory
functions. A second is that these functions exhibit the
characteristic features of structural relaxation, e.g. rapidly
increasing relaxation times upon lowering the tempera-
ture. Yet, the functional form of these memory kernels
remains undetermined within this framework, except for
the conventional analytic properties. Usually it is not pos-
sible to directly extract the frequency dependence of of the
memory kernels from light-scattering experiments. Rather
one has to rely on empirical functions and adjust a small
number of parameters to obtain a reasonable description
of experimental data. As a further step, one can supple-
ment these empirical functions with features inspired from
theoretical considerations, e.g. the fast β-process as dis-
cussed in the context of mode-coupling theory [2].

Time resolved optical spectroscopy of the same molec-
ular liquids has recently developed into an important tool;
this is particularly the case for the impulsive stimulated
thermal scattering technique (ISTS) mentioned in the In-
troduction [6–8]. The most important part of the new in-
formation obtained from these measurements is derived
from the coupling of the heat diffusion process with the
stimulated hydrodynamics mode. We have not incorpo-
rated, in the microscopic derivation of the dynamical equa-
tions, a local temperature as a pertinent variable, contrary
to what has been done in [5]. In order to properly exploit
the information contained in these ISTS experiments, the
whole procedure developed in the present paper has to be
repeated with the inclusion of the variable(s) describing
the local temperature of the supercooled liquid. It has to
be found if this generalisation will require more memory
functions than could be anticipated from a phenomenolog-
ical extension of the full set of Navier-Stokes equations to
the case of a supercooled (memory function aspect) molec-
ular (inclusion of the rotation-translation coupling and of
the molecular orientation dynamics) liquid [15].

We wish to thank H.Z. Cummins and W. Götze for their useful
comments and suggestions.

Appendix A: Static averages

The Hamilton function of identical, interacting, symmetric
tops reads:

H =
∑
α

Tα + V ({Rα, φα, Θα}) , (A.1)
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where the kinetic energy of the α-th molecule is given by:

Tα =
P2
α

2m
+

(pαφ − pαψ cosΘα)2

2I sin2Θα
+
p2
αΘ

2I
+
p2
αψ

2I ′
· (A.2)

Here Rα, φα, Θα, ψα denote the center-of mass position
and the Euler angles of the molecule following the def-
inition of [16], and Pα, pαφ, pαΘ, pαψ the corresponding
canonical momenta. The moments of inertia are denoted
by I, I ′ for rotation perpendicular to and around the
molecule’s axis of symmetry. The potential energy of the
interacting molecules is denoted by V . Note that, due to
the symmetry, the interaction does not depend on the Eu-
ler angles ψα.

The orientational current, Q̇ij(q) = iLQij(q) =
{H,Qij(q)}, then splits naturally into two parts:

Q̇ij(q) = N−1/2
N∑
α=1

iq · Pα

m

(
ûαiûαj −

1
3
δij

)
eiq·Rα

+N−1/2
N∑
α=1

eiq·Rα iLûαiûαj , (A.3)

where the first term corresponds to the translational mo-
tion of the center of mass and the second term describes
molecular reorientations.

By definition:

(A(q)|B(q)) =
∫

dΓ e−H/kBT δA(q)∗δB(q) , (A.4)

where dΓ =
∏
α dRαdφαdΘαdψαdPαdpαφdpαΘdpαψ de-

notes the canonical phase space volume element. Let us
compute (Q̇ij(q)|Jk(q)). In this thermal average appear
two types of integrals (see equation (A.3)): one involving
(q · Pα)Pβk, and the second (iLûαiûβj)Pβk. As

iLûαiûβj =

{∑
γ

Tγ , ûαiûβj

}
(A.5)

involves only the angular variables, the only part depen-
dent on the linear momentum in the second terms reads
(c.f. Eqs. (A.1) and (A.2)):∫

e−P
2
βk
/(2mkBT )PβkdPβk = 0. (A.6)

One is thus left with the contributions of the first term.
They read:

(Q̇ij(q)|Jk(q)) =

N−1
N∑

α,β=1

(
iq ·Pα

m

(
ûαiûαj −

1
3
δij

)
eiq·Rα

∣∣∣Pβkeiq·Rβ

)

= −iqkkBTN−1
N∑
α=1

((
ûαiûαj −

1
3
δij

)
eiq·Rα

∣∣∣eiq·Rα

)

= −iqkkBTN−1
N∑
α=1

〈(ûαiûαj −
1
3
δij)〉 = 0, (A.7)

where the last but one equality originates from averaging
over the Gaussian variable, Pα, and the last one from the
rotational symmetry of the problem. Equation (A.7) has
been reported as equation (9) in the body of the present
paper.

The kinetic energy expressed in terms of canonical
momenta depends explicitly on the Euler angles, hence
the evaluation of thermal averages is quite involved. This
can be avoided by eliminating the canonical momenta in
favour of the angular momenta [16]:

pαφ = −J̃αx sinΘα cosψα + J̃αy sinΘα sinψα
+J̃αz cosΘα , (A.8a)

pαΘ = J̃αx sinψα + J̃αy cosψα , (A.8b)

pαψ = J̃αz . (A.8c)

One checks that the Jacobian is sinΘα, while the corre-
sponding part of the kinetic energy reads Tα = (J̃2

αx +
J̃2
αy)/2I + J̃2

αz/2I
′. Then the partition sum is given by

Z =
∫ ∏

α

dRαdφαd cosΘαdψαdPαdJ̃αe−H/kBT . (A.9)

Thus, averaging over the angular momenta is just Gaus-
sian and averaging over the Euler angles amounts to aver-
aging over the usual Haar measure of the rotation group.

In order to calculate the long-wavelength limit of the
auto-correlation function of the orientational currents, it
is sufficient to calculate it for one of its components, say
Q̇zz(q). Since ûαz = cosΘα and Θ̇α = {H,Θα} = pαΘ/I,
one finds, for q → 0:

Q̇zz(q) = −2
I
N−1/2

N∑
α=1

[J̃αx sinψα

+J̃αy cosψα] cosΘα sinΘα . (A.10)

Then the long-wavelength correlation function of the
orientational current can be evaluated:

(Q̇zz(q = 0)|Q̇zz(q = 0)) =
4
I2
N−1

∑
α

〈
[
J̃αx sinψα + J̃αy cosψα

]2

cos2Θα sin2Θα〉

= 4
kBT

I
N−1

∑
α

〈cos2Θα sin2Θα〉 =
8kBT
15I

· (A.11)

Comparison with equation (8) yields for the ideal gas li-
bration frequency Ω2 = 2kBT/5I.

Appendix B: Operator identity

The time evolution operator, R(t) = exp(iLt), may be
split into two parts R(t) = RP (t) + RQ(t) with RP (t) =
R(t)P,RQ(t) = R(t)Q. From the equation of motion,
∂tR(t) = R(t)iL, one finds:

∂tRQ(t) = RP (t)iLQ+RQ(t)iLQ. (B.1)
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The solution of equation (B.1) can be expressed in terms
of RP (t) as:

RQ(t) = QeiLQt +
∫ t

0

RP (s)iLQeiLQ(t−s)ds. (B.2)

Furthermore, because R′(t) = QeiLQt incorporates the
projection operator Q, one easily finds, by e.g. expansion
of the exponential, that R′(t) may be written in the sym-
metric form:

R′(t) = QeiQLQtQ. (B.3)

Collecting terms, one arrives at equation (14).

Appendix C: Properties of the memory
functions

The memory kernels of the type (A|R′(t)|A) exhibit the
same mathematical properties as auto-correlation func-
tions, viz. for complex frequencies in the lower half plane,
their Laplace transform is analytic with non-negative
imaginary part. A non-rigorous proof can be adapted from
Berne and Pecora [12]. Since R′(t) = Q exp(iQLQt)Q, we
formally introduce a complete set of eigenfunctions of the
hermitian (with respect to the Kubo scalar product) op-
erator QLQ:

QLQφλ = λφλ, (C.1)

where all eigenvalues are real. Thus we can write:

(A|R′(t)|A) = (QA|eiQLQt|QA)

=
∑
λ

(QA|φλ)eiλt(φλ|QA) . (C.2)

The Laplace transform yields:

LT [(A|R′(t)|A)](ω) =
∑
λ

1
ω − λ

|(QA|φλ)|2 , (C.3)

with complex frequencies in the lower half-plane. Since all
the poles are located on the real axis, the Laplace trans-
form is analytic for ω = Ω − iε, ε > 0. Furthermore:

ImLT [(A|R′(t)|A)](ω) =∑
λ

ε

(Ω − λ)2 + ε2
|(QA|φλ)|2 ≥ 0. (C.4)

In particular, provided the limit ε↘ 0 exists, one obtains
for real ω:

ImLT [(A|R′(t)|A)](ω) =
∑
λ

πδ(ω − λ)|(QA|φλ)|2 ≥ 0.

(C.5)

Consider now a collection of phase space variables
Ai, i = 1, .., l of identical time inversion parity. Then the
real symmetric matrix ImLT [(Ai|R′(t)|Aj)](ω) is positive

semi-definite: since for arbitrary real numbers yi, i = 1, .., l
the spectrum of the autocorrelation function of Y =∑l
i=1 yiAi is non-negative, one finds:

n∑
i,j=1

yiyjImLT [(Ai|R′(t)|Aj)](ω) ≥ 0, (C.6)

which implies the property. For frequencies ω → 0, one
obtains Onsager’s relations, viz. the matrix of the kinetic
coefficients is symmetric with non-negative eigenvalues.
Hence, equation (C.6) can be interpreted as the proper
generalisation of Onsager’s relations to finite frequencies.

Appendix D: Transverse phonons
and the Andersen-Pecora approach
in the low temperature limit

If one makes the (incorrect) supposition that the mem-
ory kernels of the Andersen-Pecora approach can be mod-
eled by Debye relaxation processes consistent with their
high-temperature Markov approximation and their time
reversal symmetry, this yields:

M(ω) = i
A2

τ

1
1 + iωτ

, (D.1)

η̂s(ω) = iη̂0
s

τ

1 + iωτ
, η̂0

s > 0, (D.2)

λ(ω) = −
[
if1 + f2

ωτ

1 + iωτ

]
, f1, f2 > 0. (D.3)

The special form proposed for equation (D.3) derives from
the fact that λ(t) is an odd function of time. If we suppose
it to be the time derivative of f(t), the auto-correlation
function of some variable, f1 is its t = 0 value and we
have chosen for its late-time evolution a smooth Debye-
like behaviour.

Let us admit that, in the ωτ 
 1 regime, the value of
A is smaller than 1/

√
2. Equation (D.1) then yields a VH

backscattering spectrum with a pseudo-Lorentzian line
shape and a line width approximately equal to τ−1A2(1−
2A2)−1/2. For ω larger than this line width, one can write
for the q-dependent part of equation (68):

I(q, ω) = −q2
(

Λ′

mnω2
0

)2
m2v2

ω

[
Re

(
ωλ(ω)

ω −M(ω)

)2
]

×Im
1

ω2 − q2ωηT (ω)/mn
· (D.4)

In this ωτ 
 1 limit, this reads:

I(q, ω) = −q2
(

Λ′

mnω2
0

)2
m2v2

ω
(f1 − f2)

2

×Im
1

ω2 − q2c2T + iε
, (D.5)
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ε being a small positive quantity. Equation (D.5) does rep-
resent the Brillouin spectrum of a transverse phonon, but
the square of its the velocity is given by:

c2T =
η̂0
s

mn
+

Λ′

mnω2
0

(f1 − f2)2. (D.6)

In the spirit of the Andersen-Pecora approach, η̂s(t) rep-
resents the contribution of the molecular center-of-mass
motion to the shear viscosity (see, nevertheless, the re-
mark below Eq. (71a)). Within the same spirit, [η̂0

s/mn]1/2
should represent the contribution of the same motion to
the transverse sound velocity. As announced, the bare
sound velocity, [η̂0

s/mn]1/2, is renormalized by a term in
Λ′/ω2

0, the signature of the rotation-translation coupling,
but this renormalisation leads to an unphysical increase
of the sound velocity, instead of the expected physical de-
crease.
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